With effect from: 2023-24 (R-22)

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS)

Accredited by NAAC with A++ Grade

9-5-81, Ibrahimbagh, Hyderbad-500031, Telangana State

DEPARTMENT OF MATHEMATICS

COMPLEX VARIABLES (OPEN ELECTIVE-I for CSE,CSE-AIML & IT of 2/4 B.E III-Sem)

L:T:P (Hrs./week):2:0:0	SEE Marks :60	Course Code: U220E320MA
Credits: 2 CIE Marks: 40		Duration of SEE: 3 Hrs
COURSE OBJECTIVES		COURSE OUTCOMES
he course will enable the students to :		At the end of the course students should be able to:
 Understand the Analytic functions, conditions and harmonic functions. Evaluate the line integral of a function of a complex variable using Cauchy's integral formula, and how to Understand the concept of Taylor's and Laurent Series. Understand the Cauchy's residue 		 Apply the condition(s) for a complex variable function to be analytic and/or harmonic and to construct an Analytic function. Evaluate the complex integrals by Cauchy's theorem and Cauchy's Integral formula. Identify the singularities of a function and to expand a given function as a Taylor's / Laurent's series.

UNIT – I(8 classes) DIFFERENTIATION OF COMPLEX FUNCTION

Introduction to complex function-Limits and Continuity of function - Differentiability and Analyticity - Necessary & Sufficient Condition for a Function to be Analytic(Cartesian) - Milne-Thompson's method -Harmonic Functions.

UNIT - II(6 classes) INTEGRATION OF COMPLEX FUNCTION

Complex Integration- Cauchy's Theorem(with proof) - Cauchy's Integral Formula(with proof) - Evaluation of integrals by Cauchy's Integral formula.

UNIT - III(6 classes) SERIES OF COMPLEX FUNCTIONS

Power series - Taylor's Series - Laurent's Series (without proofs) -Zero and singularities of complex function.

UNIT - IV(8 classes) RESIDUES

Introduction to Residues- Residues at singularities-Cauchy's Residue theorem (without proof) -Evaluation of integrals by Cauchy's Residue theorem.

Learning Resources:

- 1 Advanced Engineering Mathematics 3rd Edition, R.K.Jain&S.R.K.Iyengar, Narosa Publishing House.
- 2 Higher Engineering Mathematics 40thEdition Dr. B.S Grewal, Khanna Publishers.
- 3 A Text book of Engineering Mathematics, N.P.Bali& Manish Goyal, Laxmi Publications.

 Online Resources:
 - 1 http://mathworld.wolfram.com/topics
 - 2 http://www.nptel.ac.in/course.php;

The break-up of CIE: Internal Tests + Assignments + Quizzes

1 No. of Internal Tests : 2 Max. Marks for each Internal Tests : 30

2 No. of Assignments : 2 Max. Marks for each Assignment : 5

3 No. of Quizzes : 2 Max. Marks for each Quiz Test : 5

Duration of Internal Tests : 90 Minutes

Prof.N.Kishan (OU Nominee) Prof.M.A.Srinivas (Subject Expert-JNTU-H) Dr.T.Sudhakar Rao Chairman, BOS)